STFREOSELECTIVE REDUCTION OF 3-KETC GIBBERELLIN ACIDS

TO 3 β -OLS USING K-SELECTRIDE WITH KH₂PO₄ BUFFER

Russell A. Bell¹ and John V. Turner^{*}

Research School of Chemistry, Australian National University, P.O. BOX 4, **Canberra,** A.C.T. 2600, Australia

SUMMARY: KH2P04 buffered K-Selectride gives with 3-keto qibberellin acids, berates which are reduced stereoselectively to 3B-01s.

In connection with our structure-activity studies 2 and syntheses of gibberellins, 3 we required a simple solution to the perennial problem of efficiently converting the available C19-qibberellins A₃ [(1), gibberellic acid] and A₇ (2),⁴ into their respective 1,2-dihydro analogues A₁ (5) and A₄ (6). Early approaches⁵ employing selective hydrogenation of the Δ (1) bond often lead to hydroqenolysis of the allylic lactone. This problem has been solved by more recent procedures⁶ based upon conjugate hydride-reduction of the readily derived A^l-3one methyl esters, e,q . of acid (4), but the un-natural 3α -(equatorial)-hydroxy esters, $c.f$. (9), are mainly obtained as a consequence of final hydride-delivery to C(3) along the less hindered B-vector.

To probe the feasibility of inducing an α -attack of hydride at $C(3)$, and hence generating 3ß-(axial)-alcohols, we treated the 3-keto-A₄ acid (8)^{7,10} in THF with potassium tri-sec-butylborohydride (K-Selectride)¹¹ in the expectation that an initial rapid reaction with the 8-carboxylic acid group would generate a borate complex which, because of steric interference and Coulombic repulsion, should then disfavour reagent approach to C(3) along the β -vector. In the event, this K-Selectride reduction of (8) stereoselectively gave gibberellin A₄ (6)^{8,10} in \geqslant 90% yield with \sim 4% 3-epi-A₄ (9).^{8,10} It is of mechanistic and preparative significance that in a similar reduction using lithium tri-sec-butylborohydride which forms less bulky lithium carboxylates, 12 3-epi-A₄ (9) was now the major product, $\scriptstyle\sim$ 80%, with A_{4+} (6) formed in only \sim 17% yield.

(9) 6H, aOH II

4871

For the direct conversion of A₃-ketone (3)^{7,10} into A₁ (5)^{3,10} and A₇-ketone (4)^{7,10} into A_{μ} (6) using K-Selectride, a proton source was needed which would decompose in situ the intermediate enol borate from an initial 1,4-addition of hydride, to unmask the respective ketones (7) and (8) for the final 1,2-reduction. We found that powdered, anhydrous, KH_2PO_u not only fulfilled this requirement but also served to buffer the reaction mixture without rapidly destroying the K-Selectride. 13 Thus, under prescribed conditions (see below), (3) and (4) were reduced in \geqslant 95% yield and with \geqslant 95% stereoselectively to the respective 3β -(axial)-hydroxy gibberellins, A_l (5) and A₄ (6).

We expect that the profound stereochemical influence of borane complexation on the reduction of 3-keto gibberellin acids, and the compatibility of $KH_{2}PO_{4}$ with K-Selectride, will find wider synthetic applications.

General Procedure - K-Selectride-KH₂PO₄ Reduction:

K-Selectride in THF (0.5 M, 0.8 ml, 0.4 mmol) was added during 5 min under N_2 to a stirred solution [(3) requires initial warming to 50°] of the 3-keto gibberellin acid (0.1 mmol) in THF (1 ml) at -70° , containing dry, powdered, KH₂PO₄ (82 mg, 0.6 mmol). The mixture was brought to -30° during 30 min then to 0° during 90 min after which no ketone remained (TLC, quench -70°). The cooled (-10°) mixture was treated with aq. $KH_{2}PO_{u}$ (20%, 0.1 ml), the pH adjusted to \sim 3 (H₃PO₄, 10%) and CH₂Cl₂ (12 ml) added. The dried (Na₂SO₄), concentrated, mixture was quickly chromatographed (Silica act. 3, 6 mm X 50 mm, eluant as for TLC 10) to give: non-polar borane, then \geqslant 90% 3 β -hydroxy and γ 4% 3a-hydroxy gibberellin acids.

AcknowZedgements: We are grateful to Professor L.N. Mander for his generous support and to I.C.I. (UK) for gifts of gibberellins A₃ and A₄/7.

References and Notes

- 1. Visiting Fellow in Chemistry from McMaster University, Hamilton, Ontario, Canada.
- 2. L.N. Mander, J.V. Turner and B. Twitchin, *Tetrahedron Lett., 22, 3017 (1981).*
- 3. L. Lombardo, L.N. Mander and J.V. Turner, j. *Am. Chem. Sot., 102,* 6626 (19RO).
- 4. Gibberellin A₇ is isolated with A₄ as a mixture, resolvable by HPLC.¹⁰ However, the operations described here for $A_7 + A_4$ work on the $A_4/7$ mixture equally well.
- 5. (a) B.E. Cross, R.H.B. Galt and J.R. Hanson, *Tetrahedron, 18,* 451 (1962); (b) D.F. Jones and P. McCloskey, J. *Appl. Chem., 13, 324* (1963).
- 6. Reagents used include, (a) LiBHk-THF: I.A. Gurvich, N.S. Kobrina and V.F. Kucherov, *BUZZ. Acad. Sci. U.S.S.R., 1668* (1969); (b) NaBHh-LiBr: M.H. Beale and J. MacMillan, *J.C.S. Perkin I, 877 (1980);* (c) NaBH+-MeOH: B. Voigt, G. Adams, N.S. Kobrina, E.P. Serebryakov and N.D. Zelinsky, *Z. Chem., 17, 373 (1977);* (d) NaBHq-CuCl: Z.J. Duri, B.M. Fraga and J.R. Hanson, J. *C.S. Perkin I,* 161 (1981); (e) K-Selectride-THF-EtOH: L. Lombardo, L.N. Mander and J.V. Turner, *Aust. J. Chem.,* 745 (1981). *3\$,*
- 7. *3-Keto-gibberellins A₄ and A₇° were made by CrO₃ oxidation* the separated alcohols;4 *3-keto-gibberellin A3 (3)'* was prepared by oxidising of either an A_{4/7} mixture or gibberellic acid with pyridinium dichromate as for the corresponding methyl ester. 6d
- 8. C.D. Aldridge, J.R. Hanson and T.P.C. Mulholland, J. *Chem.* Sot., 3539 (1965).
- 9. P.J. Keay, J.S. Moffatt and T.P.C. Mulholland, J. *Chem. Sot.,* 1605 (1965).
- 10. All gibberellins had characteristics as reported: their purity was established by TLC (Silica; CH₂Cl₂:Et₂O:MeOH:HOAc, 20:20:1:1; light petrol adjusts Rf) and by HPLC [Waters, u Bondapak C18, flow rate 4 ml/min; MeOH: H₂O, 55:45, 3.6 mM in H₃PO₄; (9) 14 min, (2) 15 min, (6) 17 min, (8) 18 min. MeOH:H2O, 32.5:67.5, 3.6 mM in H3PO4; (3-epi-GA₁) 13 min, (1) 14 min, (5) 15 min, (3) 23 min]. Selected data 'H-NMR (CDCl₃-d₄MeOH) 6 H 18 [3H, s] and H 6, H 5 [doublets $J \sim 10$ Hz]:

11. J.M. Fortunato and B. Ganem, J. *Org. Chem., 41,* 2194 (1976).

12. H.C. Brown, S.C. Kim and S. Krishnamurthy, *J. Org. Chem., 45, 1* (1980).

13. Several alcohols were tried as a proton source under a variety of conditions but protonation of the enolate was too slow below -30° and above this temperature additional polar products arose. KH_2PO_4 is compatible with L-Selectride also. (Received in UK 18 September 1981)