STEREOSELECTIVE REDUCTION OF 3-KETO GIBBERELLIN ACIDS

TO 38-OLS USING K-SELECTRIDE WITH KH2PO4 BUFFER

Russell A. Bell¹ and John V. Turner*

Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600, Australia

KH₂PO₄ buffered K-Selectride gives with 3-keto gibberellin acids, SUMMARY: borates which are reduced stereoselectively to 3β -ols.

In connection with our structure-activity studies 2 and syntheses of gibberellins, 3 we required a simple solution to the perennial problem of efficiently converting the available Cl9-gibberellins A₃ [(1), gibberellic acid] and A₇ (2), 4 into their respective 1,2-dihydro analoques A₁ (5) and A₄ (6). Early approaches⁵ employing selective hydrogenation of the Δ (1) bond often lead to hydrogenolysis of the allylic lactone. This problem has been solved by more recent procedures 6 based upon conjugate hydride-reduction of the readily derived Δ^1 -3one methyl esters, e.g. of acid (4), but the un-natural 3α -(equatorial)-hydroxy esters, c.f. (9), are mainly obtained as a consequence of final hydride-delivery to C(3) along the less hindered β -vector.

To probe the feasibility of inducing an α -attack of hydride at C(3), and hence generating 3β -(axial)-alcohols, we treated the 3-keto-A_L acid (8)^{7,10} in THF with potassium tri-sec-butylborohydride (K-Selectride)¹¹ in the expectation that an initial rapid reaction with the β -carboxylic acid group would generate a borate complex which, because of steric interference and Coulombic repulsion, should then disfavour reagent approach to C(3) along the β -vector. In the event, this K-Selectride reduction of (8) stereoselectively gave gibberellin A₄ (6)^{8,10} in \geq 90% yield with \sim 4% 3-epi-A₄ (9).^{8,10} It is of mechanistic and preparative significance that in a similar reduction using lithium tri-sec-butylborohydride which forms less bulky lithium carboxylates, 12 3-epi-A₄ (9) was now the major product, \sim 80%, with A_4 (6) formed in only ~ 17 % yield.

		<u> </u>
(5)	вон, ан	ОН
(6)	вон, ан	н
(7)	0	ОН
(8)	0	н
(9)	βН, αОН	н

For the direct conversion of A₃-ketone (3)^{7,10} into A₁ (5)^{3,10} and A₇-ketone (4)^{7,10} into A_{μ} (6) using K-Selectride, a proton source was needed which would decompose in situ the intermediate enol borate from an initial 1,4-addition of hydride, to unmask the respective ketones (7) and (8) for the final 1,2-reduction. We found that powdered, anhydrous, KH_2PO_{L} not only fulfilled this requirement but also served to buffer the reaction mixture without rapidly destroying the K-Selectride.¹³ Thus, under prescribed conditions (see below), (3) and (4) were reduced in \ge 95% yield and with \ge 95% stereoselectively to the respective

 3β -(axial)-hydroxy gibberellins, A_1 (5) and A_4 (6).

We expect that the profound stereochemical influence of borane complexation on the reduction of 3-keto gibberellin acids, and the compatibility of KH2PO4 with K-Selectride, will find wider synthetic applications.

General Procedure - K-Selectride-KH2PO4 Reduction:

K-Selectride in THF (0.5 M, 0.8 ml, 0.4 mmol) was added during 5 min under N $_2$ to a stirred solution [(3) requires initial warming to 50°] of the 3-keto gibberellin acid (0.1 mmol) in THF (1 ml) at -70°, containing dry, powdered, KH₂PO₄ (82 mg, 0.6 mmol). The mixture was brought to -30° during 30 min then to 0° during 90 min after which no ketone remained (TLC, quench -70°). The cooled (-10°) mixture was treated with aq. KH_2PO_4 (20%, 0.1 ml), the pH adjusted to \sim 3 (H₃PO₄, 10%) and CH₂Cl₂ (12 ml) added. The dried (Na₂SO₄), concentrated, mixture was quickly chromatographed (Silica act. 3, 6 mm X 50 mm, eluant as for TLC 10) to give: non-polar borane, then \geq 90% 3β-hydroxy and \sim 4% 3α-hydroxy gibberellin acids.

Acknowledgements: We are grateful to Professor L.N. Mander for his generous support and to I.C.I. (UK) for gifts of gibberellins A_3 and $A_4/7$.

References and Notes

- 1. Visiting Fellow in Chemistry from McMaster University, Hamilton, Ontario, Canada.
- 2. L.N. Mander, J.V. Turner and B. Twitchin, Tetrahedron Lett., 22, 3017 (1981).
- 3. L. Lombardo, L.N. Mander and J.V. Turner, J. Am. Chem. Soc., 102, 6626 (1980). 4. Gibberellin A_7 is isolated with A_4 as a mixture, resolvable by HPLC.¹⁰ However, the operations described here for $A_7 \rightarrow A_4$ work on the $A_{4/7}$ mixture equally well.
- 5. (a) B.E. Cross, R.H.B. Galt and J.R. Hanson, Tetrahedron, 18, 451 (1962); (b) D.F. Jones and P. McCloskey, J. Appl. Chem., 13, 324 (1963).
- 6. Reagents used include, (a) LiBH4-THF: I.A. Gurvich, N.S. Kobrina and V.F. Kucherov, Bull. Acad. Sci. U.S.S.R., 1668 (1969); (b) NaBH4-LiBr: M.H. Beale and J. MacMillan, J.C.S. Perkin 1, 877 (1980); (c) NABH4-MeOH: B. Volgt, G. Adams, N.S. Kobrina, E.P. Serebryakov and N.D. Zelinsky, Z. Chem., 17, 373 (1977); (d) NaBH₄-CuCl: Z.J. Duri, B.M. Fraga and J.R. Hanson, J.C.S. Perkin 1, 161 (1981); (e) K-Selectride-THF-EtOH: L. Lombardo, L.N. Mander and J.V. Turner, Aust. J. Chem., 34, 745 (1981).
 7. 3-Keto-gibberellins A₄ and A₇⁸ were made by CrO₃ oxidation⁶⁶ of either an A_{4/7} mixture or
- the separated alcohols; $\overset{4}{3}$ -keto-gibberellin A_3 (3)⁹ was prepared by oxidising gibberellic acid with pyridinium dichromate as for the corresponding methyl ester. 6d
- 8. C.D. Aldridge, J.R. Hanson and T.P.C. Mulholland, J. Chem. Soc., 3539 (1965).
- 9. P.J. Keay, J.S. Moffatt and T.P.C. Mulholland, J. Chem. Soc., 1605 (1965).
- 10. All gibberellins had characteristics as reported; their purity was established by TLC (Silica; CH₂Cl₂:Et₂O:MeOH:HOAc, 20:20:1:1; light petrol adjusts Rf) and by HPLC [Waters, µ Bondapak C18, flow rate 4 ml/min; MeOH:H₂O, 55:45, 3.6 mM in H₃PO₄; (9) 14 min, (2) 15 min, (6) 17 min, (8) 18 min. MeOH:H₂O, 32.5:67.5, 3.6 mM in H_3PO_4 ; (3-epi-GA₁) 13 min, (1) 14 min, (5) 15 min, (3) 23 min]. Selected data ¹H-NMR (CDCl₃-d₄MeOH) δ H 18 [3H, s] and H 6, H 5 [doublets $J \sim 10 Hz$]:

Compounds	(3)	(4)	(5)	(6)	(8)	(9)
Н 18	1.32	1.33	1.16	1.16	1.18	1.20
нб	2.86	2.92	2.62	2.64	2.78	2.76
н 5	3.52	3.47	3.08	3.12	3.08	2.46

11. J.M. Fortunato and B. Ganem, J. Org. Chem., 41, 2194 (1976).

12. H.C. Brown, S.C. Kim and S. Krishnamurthy, J. Org. Chem., 45, 1 (1980).

13. Several alcohols were tried as a proton source under a variety of conditions but protonation of the enclate was too slow below -30° and above this temperature additional polar products arose. KH_2PO_4 is compatible with L-Selectride also. (Received in UK 18 September 1981)